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Abstract

In a structural modification problem the mass and stiffness matrices are modified to obtain a desired spectrum. In this

paper, this is done by imposing constraints on the structure. The undamped natural vibrations of a constrained linear

structure are calculated by solving a generalized eigenvalue problem derived from the equations of motion for the

constrained system involving Lagrangian multipliers. The coefficients of the constraint matrix are taken as design variables

and a set of equations defining the inverse structural modification problem is formulated. This modification problem

requires an iterative method for its solution. An algorithm based on Newton’s method is employed. Each iteration step

involves the calculation of a rectangular Jacobian and the solving of an associated underdetermined system of linear

equations. The system can be solved by using the Moore–Penrose inverse. The method is demonstrated in some numerical

examples.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Today, with the evolution of computer hardware and matrix computation procedures, it is routine to
predict the dynamic behaviour of structures using numerical methods, and this has replaced many of the costly
experimental modal analyses. If an analysis reveals that the structure has unwanted modal properties there is a
need to modify the structure in order to obtain the desired modal properties. One procedure, where changes in
mass- stiffness- or damping-properties aim at a change in the performance of the structural resonances, is
called a structural modification.

Theoretically, structural modifications can be performed in a variety of ways depending on the type of
structure considered. Early structural modification techniques included substructuring techniques; see for
instance Refs. [1–3], where the structure was divided into substructures, resulting in smaller systems that were
modified individually. These were then coupled together into the global structure and the technique was very
appropriate for structures consisting of repeating substructures. Other ways of modifying a structure could be
to specify the modification matrices and then update the modal properties using truncated modal mass and
stiffness matrices, resulting in Rayleigh–Ritz approximations, i.e. upper bounds of the modified spectra are
obtained. However, these upper bounds may not always be good approximations of the actual spectra. In fact,
they can be very misleading. A lengthy discussion of this problem can be found in Ref. [4]. This approach was,
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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nevertheless, used by Ram and Braun [5] who formulated expressions, which gave upper and lower bounds of
the lower part of the spectrum. An alternative approach is to impose constraints on the structure. This can be
done as demonstrated by Kerstens [6,7], Dowell [8] and Lidström and Olsson [9].

The afore-mentioned approaches can all be classed as direct modification approaches, i.e. the modifications
are imposed on the structure and the new modal properties are obtained by calculations and measurements.
This procedure is repeated until the requirements are met. The opposite of the direct modification approach is
the inverse modification approach where the desired modal properties are specified and the mass and stiffness
matrices are modified so that the modal requirements are met. Braun and Ram [10] analyzed structures
consisting of discrete springs and masses and derived an approximate method for calculating the modification
matrices of the structure. The approximation was, similar to that mentioned above; optimal in a
Rayleigh–Ritz sense, but it was not necessarily a good approximation. Due to the fact that the number of
design variables is, in general, higher than, or at least equal to, the number of specified desired eigenvalues the
solution is not unique. Hence, there exist numerous possible solutions, not all physically realizable. Gladwell
and Zhu [11] and Gladwell [12–14] studied finite element and spring and mass structures with tridiagonal mass
and stiffness matrices and derived a closed form procedure, cf. Ref. [14], to construct a structure with minimal
mass satisfying the desired spectrum.

For many structures, when using, for instance, the finite element method, the mass and the stiffness matrices
are coupled, i.e. both matrices will be affected by a modification of the design variables. The problem then
becomes more complicated and, in general, the different types of elements and design variables considered
cannot be dealt with in a general manner, and must therefore be regarded individually. Djoudi et al. [15]
derived a simple eigenvalue problem for calculating the inverse modification problem for bar and truss
structures. This method is free from iterations and determines the cross sectional area modifications of the
members involved. However, the solutions of the eigenvalue problem are not necessarily physically realizable,
i.e. the resulting cross sectional area can be negative. The method may also lead to an unwanted spectral shift.
A similar formulation was derived by Bahai et al. [16] and Bahai and Aryana [17] for continuous finite
elements with design variables such as Young’s modulus, thicknesses and nodal coordinates. However, the
solution scheme included a first-order Taylor expansion, and hence the solution obtained is an approximation.
In Refs. [18,19], Farahani and Bahai provided algorithms for relocating the spectrum for arbitrary finite
element structures. The algorithms were based on first (cf. Ref. [18]) and second (cf. Ref. [19]) order
expansions of the eigenvalues with respect to the design variables, and the numerical examples demonstrated
high accuracy. In Ref. [20], Kim et al. gave an algorithm for the inverse eigenvalue problem, which is based on
an initial approximation that is obtained by linear perturbation of the system. The solution is then improved
through iterations with higher order perturbation theory until convergence is met, resulting in highly accurate
solutions.

Joseph [21] formulated an inverse generalized eigenvalue problem for arbitrary coupled mass and stiffness
matrices. These were assumed to be coupled via design variables in an arbitrary manner. Thus the system of
equations could in practice become nonlinear and hence the solutions were obtained in an iterative manner by
employing Newton’s method. In order to use Newton’s method, the Jacobian had to be calculated which was
easily done for the symmetric generalized eigenvalue problem, cf. Ref. [22]. Furthermore, the method was
applied to linear truss structures using the cross sectional area of the members as design variables and it
displayed good convergence. Formulations similar to Ref. [21] can be found in Refs. [23,24] with new solution
schemes.

Due to the fact that the Jacobian, in general, is not quadratic, the solution of the linear system of equations,
determining the next iterate, is not unique nor does it necessarily satisfy any lower bounds of the design
variables. This problem was addressed by Sivan and Ram [25] who delivered an algorithm which solves the
nonlinear underdetermined system of equations, resulting in design variables that satisfy certain lower bounds.

In this paper, we will impose linear constraints on the structure in an inverse manner in order to obtain a
desired spectrum. The nonsymmetric constraint formulation given in Ref. [9] will then be used with the
constraint matrix elements as design variables, analogous to what has been done in Ref. [21]. We then
formulate the Jacobian, which is derived and proven in a theorem in order to solve the problem iteratively.
The method is illustrated in a number of simple numerical examples where an algorithm similar to the one
provided in Ref. [25] is used.
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The outline of the paper is as follows: in the following section a brief summary of the mathematical notation
used in this paper is given. Thereafter we give a brief discussion covering some basics of modal analysis. In
Section 4 the basics of the constraint formulation in Ref. [9] is briefly summarized. This is followed by the
inverse eigenvalue formulation and the derivation of the Jacobian. Thereafter, the algorithm and the solution
of the underdetermined system are discussed, and finally we give a few simple numerical examples and a
summary of the paper.

2. Notation

In this paper, R denotes the set of real numbers. The set of n-dimensional, real column vectors is denoted by
Rn � Rn�1 and the null vector is written 0n. The Euclidean norm of a vector x 2 Rn is denoted xk k ¼

ffiffiffiffiffiffiffiffi
xTx
p

.
Rm�n denotes the set of real matrices of order m� n with the null matrix written 0m� n. If A 2 Rm�n then
AT
2 Rn�m is the transpose of A. The rank of a matrix A 2 Rm�n is written rank(A). If A is a square matrix,

i.e., n ¼ m, then det(A) denotes the determinant of A and if det(A)6¼0 then A�1 denotes its inverse. In� n

denotes the identity matrix in Rn�n. Let A 2 Rm�n, then the following linear spaces associated with A will be
employed:

rangeðAÞ ¼ x 2 Rmjx ¼ Au; u 2 Rnf g; kernelðAÞ ¼ u 2 Rn Au ¼ 0mjf g.

If V is a linear subspace of Rn then the dimension of V is denoted dimðV Þ and the orthogonal complement
of V , V?, is defined by

V? ¼ y 2 Rn yTx ¼ 0; 8x 2 V
��� �

.

3. Preliminaries

Consider the free, undamped vibrations of an n degree-of-freedom (dof) mechanical structure. This is
modelled by the system of linear, second-order differential equations

M€qþ Kq ¼ 0n, (1)

with a mass matrix M 2 Rn�n which, throughout this paper, is assumed to be symmetric and positive definite,
and a stiffness matrix K 2 Rn�n which is assumed to be symmetric and positive semi-definite. The
configuration coordinates of the structure are given by the vector q ¼ ½q1q2 . . . qn�

T 2 Rn; q ¼ qðtÞ. A solution
to Eq. (1) is given by

q ¼ x sin ot, (2)

where the constant amplitude vector x 2 Rn and the angular frequency o satisfy the linear system of equations
defining the generalized eigenvalue problem

ð�o2Mþ KÞx ¼ 0n, (3)

where x is referred to as the mode shape.
The existence of nontrivial solutions, x6¼0, to Eq. (3) requires that o satisfies the secular equation:

detð�o2Mþ KÞ ¼ 0, (4)

where the roots of Eq. (4), the natural frequencies of the structure, and the corresponding mode shapes are
denoted by

0po2
1po2

2p � � �po2
n and x1;x2; . . . ; xn, (5)

respectively, so that

ð�o2
i Mþ KÞxi ¼ 0n; i ¼ 1; 2; . . . ; n (6)

is satisfied. The mode shapes x1, x2,y,xn may be chosen as linearly independent, satisfying xTi Mxj ¼ 0; iaj.
It is convenient to assemble the mode shapes in the nonsingular modal matrix X ¼ [x1 x2yxn], and the
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corresponding natural frequencies in the diagonal spectral matrix X2
¼ diagðo2

1 o2
2 . . .o

2
nÞ. A normalization

of the modal matrix with respect to the mass matrix is obtained using the requirement XTMX ¼ In�n, and then
XTKX ¼ X2. We will subsequently refer to the structure discussed above as the original structure.

If the structure is subjected to an external harmonic excitation, f ¼ f0 sin ot, where f0 2 Rn is a constant
amplitude vector and o is a constant driving frequency, then the equation of motion reads

M€qþ Kq ¼ f0 sin ot. (7)

A solution to this differential equation is given by

x ¼ FðoÞf0, (8)

where

FðoÞ ¼ ð�o2Mþ KÞ�1 ¼
Xn

i¼1

xix
T
i

o2
i � o2

(9)

is the frequency response function of the structure, defined for o2ao2
�{ .

One of the main objectives of structural design is to see to it that the driving frequency, o, is well separated
from the spectrum of the structure.

4. The constraint formulation

A set of linear constraints on the original structure is now introduced. These are defined by the following m,
1pmon, independent linear equations:

a11q1 þ a12q2 þ � � � þ a1nqn ¼ 0;

a21q1 þ a22q2 þ � � � þ a2nqn ¼ 0;

..

.

am1q1 þ am2q2 þ � � � þ amnqn ¼ 0;

8>>>>><
>>>>>:

(10)

or, in more compact notation:

Aq ¼ 0m, (11)

where the constant matrix A ¼ ½aij� 2 Rm�n is assumed to be of full rank, i.e. rank(A) ¼ m. The configuration
space of the constrained system is the linear subspace C in Rn, defined by C ¼ kernelðAÞ ¼ ðrangeðAT

ÞÞ
? where

dimðCÞ ¼ k ¼ n�m.
Using the technique with Lagrangian multipliers it may be shown, cf. [9], that if q ¼ q(t) satisfies (1) and the

constraint condition (10) then

M€qþ Kcq ¼ 0n, (12)

where

Kc ¼ KcðAÞ ¼ QðAÞK (13)

is the so-called constrained stiffness matrix and

QðAÞ ¼ In�n � PðAÞ; PðAÞ ¼ ATCðAÞ�1AM�1, (14)

where the matrices Q and P represent projections, i.e. Q2
¼ Q and P2

¼ P, and

C ¼ CðAÞ ¼ AM�1AT
2 Rm�m (15)

is a symmetric and positive definite matrix. The equation

ð�o2Mþ KcÞx ¼ 0n (16)

represents the constrained eigenvalue problem.
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Let the solution to the eigenvalue problem (16), i.e. the natural frequencies of the constrained structure and
the corresponding mode shapes, be denoted by

o2
c;1;o

2
c;2; . . . ;o

2
c;n and xc;1; xc;2; . . . ; xc;n. (17)

The mode shapes of the constrained structure may be collected in the modal matrix Xc ¼ ½xc;1 xc;2 . . . xc;n�

and the corresponding natural frequencies in the spectral matrix X2
c ¼ diagðo2

c;1 o2
c;2 . . .o

2
c;nÞ. If K is positive

semi-definite then the natural frequencies of the constrained structure, o2
c;i; 1pipn, are real and nonnegative.

The m first natural frequencies are equal to zero

o2
c;1 ¼ o2

c;2 ¼ � � � ¼ o2
c;m ¼ 0 (18)

and the following k natural frequencies are nonnegative

0po2
c;mþ1po2

c;mþ2p � � �po2
c;n. (19)

The modal matrix Xc is nonsingular, and

XT
c MXc ¼

G HT

H J

" #
, (20)

where G 2 Rm�m is symmetric, H 2 Rk�m, k ¼ n�m and

J ¼
0s�s 0s�ðs�rÞ

0ðk�sÞ�s Iðk�sÞ�ðk�sÞ

" #
, (21)

where 0pspk. Furthermore,

Axc;mþi ¼ 0m; i ¼ 1; . . . ; k, (22)

i.e. the mode shapes xc;mþ1;xc;mþ2; . . . ;xc;n satisfy the constraint condition. For a proof of this result and a
lengthy discussion on this subject see Ref. [9].

The first m modes, with natural frequencies all equal to zero, are fictitious modes for the constrained
structure and should, from the point of view of physical interpretation, be ignored. Note that these modes do
not satisfy the constraint condition, i.e. Axc;ia0m; i ¼ 1; . . . ;m. The remaining nonnegative natural
frequencies, according to Eq. (19), and their corresponding mode shapes

xc;mþ1; xc;mþ2; . . . ;xc;n (23)

represent the vibration modes of the constrained structure.

Remark 1. The positive semi-definiteness of the stiffness matrix may, eventually, result in constrained rigid

body modes with the spectrum

0 ¼ o2
c;mþ1 ¼ o2

c;mþ2 ¼ � � � ¼ o2
c;mþsoo2

c;mþsþ1p � � �po2
c;n (24)

where the first s natural frequencies, 0pspk, correspond to rigid body modes.

Remark 2. If the constraint matrix A 2 Rn�n then the system would be fully constrained, i.e. it has no dofs and
the generalized eigenvalue problem (16) reduces to

�o2Mx ¼ 0n, (25)

which of course, in accordance with Eq. (18), only has the trivial solutions, cf. Ref. [9].

5. The inverse structural modification problem

The spectrum mapping x2
c : R

m�n ! Rnof the eigenvalue problem (16) is given by

x2
cðAÞ ¼ ½0 0 . . . 0 o2

c;mþ1ðAÞ o2
c;mþ2ðAÞ . . . o2

c;nðAÞ�
T. (26)
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From Eq. (16) it follows that

x2
c;iðAÞ ¼

xiðAÞ
TKcðAÞxiðAÞ

xiðAÞ
TMxiðAÞ

. (27)

Specifying the k natural frequencies of interest for the modified structure, with 1pkpn, results in a set of k

nonlinear equations

o2
c;mþ1ðaijÞ ¼ o2�

1 ;

o2
c;mþ2ðaijÞ ¼ o2�

2 ;

..

.

o2
c;mþkðaijÞ ¼ o2�

k ;

8>>>>>><
>>>>>>:

(28)

where o2�
i i ¼ 1; . . . ; k denotes the desired natural frequencies.

A matrix A� 2 Rm�n with rank(A*) ¼ m, satisfying (28), is said to be a solution to the structural
modification problem. Consider the partial spectrum mapping ~x2

c : R
m�n ! Rk defined by ~o2

c;iðAÞ ¼ o2
c;mþiðAÞ,

i ¼ 1,y,k. The derivative of this mapping, the Jacobian, is denoted

JðAÞ ¼
q ~o2ðAÞ

qA
2 Rk�m�n. (29)

Note that J(A) is a linear mapping from Rm�n to Rk. Since kpp the solution of Eq. (28) will, in general, not
be unique. For instance if rankðJðA�ÞÞ ¼

def
dimðrangeðJðA�ÞÞÞ ¼ r, 1prpk, in a neighbourhood of A* then the

set of all solutions to Eq. (28) will be a manifold of dimension p�r in a neighbourhood of A*. This manifold
character of the solution set may eventually lead to a strong dependence of the numerical solution to Eq. (28),
on the initial value for A taken in an iterative numerical solution procedure. We employ the notation
~xiðAÞ ¼ xmþiðAÞ.

Theorem. The matrix elements Ji
jl of the Jacobian are given by

Ji
jl ¼

qo2
i

qajl

¼ �2 ~xTi Q
qAT

qajl

C�1Aþ ATC�1
qA
qajl

QT

� �
M�1KQT ~xi;

(30)

where ~xi satisfy ~xTi M ~xi ¼ 1 and i ¼ 1,y,k, j ¼ 1,y,m, l ¼ 1,y,n.

Remark. Note that the matrix elements of the Jacobian do not contain derivatives of the eigenvectors.

For the proof of this Theorem we need the following Lemma:

Lemma. xa0, o240 is a solution to the eigenvalue problem (16) if and only if it is a solution to

ð�o2In�n þWÞg ¼ 0, (31)

where

g ¼M1=2x (32)

and

W ¼ WðAÞ ¼ UðAÞM�1=2KM�1=2UðAÞ 2 Rn�n (33)

is symmetric and positive semi-definite. Here

UðAÞ ¼ In�n �PðAÞ and PðAÞ ¼M�1=2ATCðAÞ�1AM�1=2 (34)

are orthogonal projections, i.e. UT ¼ U; U2 ¼ U and PT ¼ P; P2 ¼ P.
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Proof. A change of coordinates in Eq. (16), in accordance with Eq. (32), and a pre-multiplication of Eq. (16)

with the matrix M�1/2 gives

ð�o2In�n þM�1=2KcM
�1=2Þg ¼ 0, (35)

which is equivalent to Eq. (16) and since

M�1=2KcM
�1=2 ¼ ðIn�n �M�1=2ATC�1AM�1=2ÞM�1=2KM�1=2

¼ UM�1=2KM�1=2, ð36Þ

Eq. (35) may be written as

ð�o2In�n þUM�1=2KM�1=2Þg ¼ 0. (37)

Now if o240, by operating with P on Eq. (37) gives Pg ¼ 0 and consequently Ug ¼ g and inserting this
into Eq. (37) proves Eq. (31). Conversely, by operating with P on Eq. (31) gives Pg ¼ 0 and consequently
Ug ¼ g proving Eq. (35). This proves the Lemma. &

Remark. Note that U ¼M�1=2QM1=2 and P ¼M�1=2PM1=2.

Proof of the Theorem. From the Lemma we obtain, for i ¼ 1,y,k

~x2
i ðAÞ ¼ ~giðAÞ

TWðAÞ ~giðAÞ, (38)

where ~gi ¼M1=2 ~xi and a direct calculation and using the symmetry of W gives, cf. Ref. [22]

q ~o2
i

qajl

¼
q ~gT

i

qajl

W ~gi þ ~gT
i

qW
qajl

~gi þ ~gT
i W

q ~gi

qajl

¼ ~gT
i

qW
qajl

~gi þ 2
q ~gT

i

qajl

W ~gi

¼ ~gT
i

qW
qajl

~gi þ 2 ~o2
i

q ~gT
i

qajl

~gi. ð39Þ

Since ~xTi M ~xi ¼ 1, we get ~giðAÞ
T ~giðAÞ ¼ 1 and thus

q ~gT
i

qajl

~gi ¼ 0 (40)

and this inserted into Eq. (39) gives

q ~o2
i

qajl

¼ ~gT
i

qW
qajl

~gi

¼ ~xTi M
1=2 qU

qajl

M�1=2KM�1=2UþUM�1=2KM�1=2
qU
qajl

� �
M1=2 ~xi

¼ 2 ~xTi M
1=2 qF

qajl

M�1=2KM�1=2UM1=2 ~xi:

(41)

We then have to calculate the partial derivative

qU
qajl

¼ �
qP
qajl

¼ �M�1=2
qAT

qajl

C�1Aþ AT qC
�1

qajl

Aþ ATC�1
qA
qaj;l

� �
M�1=2 (42)

and from CC�1 ¼ Im�m we get

qC
qajl

C�1 þ C
qC�1

qajl

¼ 0m�m (43)

P. Olsson, P. Lidström / Journal of Sound and Vibration 303 (2007) 767–779 773



ARTICLE IN PRESS
P. Olsson, P. Lidström / Journal of Sound and Vibration 303 (2007) 767–779774
and hence

qC�1

qajl

¼ �C�1
qC
qajl

C�1. (44)

By substituting Eq. (44) into Eq. (42) we get

qU
qajl

¼ �M�1=2
qAT

qajl

C�1A� ATC�1
qC
qajl

C�1Aþ ATC�1
qA
qajl

� �
M�1=2 (45)

and using Eq. (15)

qC
qajl

¼
qA
qajl

M�1AT
þ AM�1

qAT

qajl

, (46)

which substituted into Eq. (45), leads to

qU
qajl

¼ �M�1=2
qAT

qajl

C�1A� ATC�1
qA
qajl

M�1AT
þ AM�1

qAT

qajl

� �
C�1Aþ ATC�1

qA
qajl

� �
M�1=2. (47)

This can be rewritten as

qU
qajl

¼ �M�1=2ððIn�n � ATC�1AM�1Þ
qAT

qajl

C�1A

þ ATC�1
qA
qajl

ðIn�n �M�1ATC�1AÞÞM�1=2

¼ �M�1=2 Q
qAT

qajl

C�1Aþ ATC�1
qA
qajl

QT

� �
M�1=2. ð48Þ

This, substituted into Eq. (41) and using the fact that U ¼M1=2QTM�1=2, proves the Theorem. &

Remark 1. It should be noted that for the general case, i.e. when no elements in the constraint matrix have
been prescribed we get

qA
qaij

¼
qakl

qaij

� 	
¼ ½dkidlj �. (49)

Remark 2. If certain elements of the constraint matrix are prescribed to be zero, i.e. amn ¼ 0 then of course we
must let

qA
qamn

¼
qakl

qamn

� 	
¼ ½0�. (50)

Depending on the desired spectral shift the number of constraints will vary from problem to problem. Using
the Rayleigh separation theorem, cf. Ref. [26], in connection with the original spectrum, we can approximately
predict the number of constraints needed. When the number of constraints m has been determined we can
reduce the system by the same number of dofs and, hence, the m lowest eigenvalues will be equal to zero and,
thus, the lowest eigenvalue to be regarded for the constrained structure is o2

mþ1. In order for the problem to
have a solution the number of constraint variables must be equal to or exceed the number of desired
eigenvalues.

6. Numerical algorithm

A solution to Eq. (28) will be found by an iterative algorithm using Newton’s method. Following Ref. [21],
let Ai; i ¼ 0; 1; . . .. denote the value of the design variables at the ith iteration step. The next iterate is given by

Aiþ1
¼ Ai

� dAi, (51)
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where the matrix dAi is determined by solving the linear system

JðAi
ÞdAi
¼ ~x2ðAi

Þ � x2�. (52)

The iteration procedure is started by prescribing A0.
For practical computational purposes it is convenient to make the identification

A ¼

a11 . . . a1n

..

. . .
. ..

.

am1 . . . amn

2
664

3
775 2 Rm�n2a ¼ a11 . . . a1n a21 . . . a2n . . . am1 . . . amn


 �T
2 Rp. (53)

Then Eq. (52) may be written

JTða
iÞdai ¼ ~x2ðaiÞ � x2�, (54)

where JT is a rectangular matrix with k rows and p columns defined by JTðuÞv ¼ JðUÞV.
Since kop, Eq. (54) becomes an underdetermined system and in order to find a solution there are a few

possibilities available. For instance, in Ref. [25], the Moore–Penrose pseudo-inverse is used. If rankðJTÞ
¼ rpk, a singular value decomposition

JT ¼ USVT (55)

is performed, where the matrices U 2 Rk�k and V 2 Rp�p are orthogonal matrices and S ¼ diag
ðs1; . . . ;srÞ 2 Rk�p. Here r ¼ minðk; pÞ and s1X � � �XsrX0, cf. Ref. [27]. By a partitioning of the matrix
V 2 Rp�p, i.e. V ¼ ½V1 V2�;V1 2 Rp�r;V2 2 Rp�ðp�rÞ, a solution to Eq. (54) is found through

dai ¼ JþTða
iÞ x2ðaiÞ � x2�
� 

þ V2b (56)

where JþT denotes the Moore–Penrose pseudo-inverse of JT and b 2 Rp�r is an arbitrary vector, see Ref. [25].
Note that Eq. (54) has an infinite number of solutions. For a detailed discussion of the Moore–Penrose
pseudo-inverse, see Ref. [28], and for the calculations leading to Eq. (56), cf. [29].

The algorithm for solving Eq. (28) reads:
1.
 CalculateM�1 and determine the number of constraints m and the k eigenvalues of interest for the modified
structure and put them in the vector x2� 2 Rk.
2.
 Set the iteration index i ¼ 0. Choose an initial constraint matrix Ai, and normalize the rows so that they
have length equal to 1 (A0 can be randomly generated; however it must have full rank). Then calculate
qA=qaij using Eq. (49).
3.
 Calculate Ci from Eq. (15) and its inverse ðC�1Þi and then the projection Qi using Eq. (14).

4.
 Solve the eigenvalue problem (16) and obtain the mass normalized mode shapes ~xiðA

i
Þ and the eigenvalues

~x2i, break the loop when ~x2i
� x2�

�� �� is sufficiently small.

5.
 Calculate the elements of the Jacobian Ji ¼ JðAi

Þ using Eq. (30) and decompose into JT.

6.
 Solve Eq. (54) for dai. This can be done in a variety of ways, for instance by using the Moore–Penrose

inverse of the Jacobian i.e. according to Eq. (56). Then decompose dai into dAi.

7.
 Update the vector Ai to Ai+1 by using Eq. (51). Normalize the rows of Ai+1 and repeat steps (3)–(7).
Remark. If we were to impose a constraint where some elements of the constraint matrix were prescribed
to be zero, i.e. amn ¼ 0 then we must set the initial value of a0

mn ¼ 0 and instead of using Eq. (49) in step 2, use
Eq. (50) when calculating qA=qamn.

7. Examples

In all the examples below the solutions are generated taking b in Eq. (56) equal to the null vector.

Example 1. A free–free mass and spring structure consists of four springs and four masses that are coupled
in series according to Fig. 1. All the springs have the stiffness ki ¼ 10 and all the masses are set equal to unity,
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Fig. 1. The structure in Example 1.

Fig. 2. The structure in Example 2.
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i.e. mi ¼ 1. The original, unconstrained structure has the natural frequencies:

x2 ¼ 0:0000 5:8579 20:0000 34:1421

 �T

.

The ambition is now to impose two constraints on the structure so that the lowest remaining two natural
frequencies become

x2� ¼ 15 25

 �T

.

By performing the iteration scheme described above, the constraint matrix

A ¼
0:5973 0:0988 0:6981 0:3823

�0:1025 0:7488 0:3637 0:5445

� 	
.

is obtained. It should be noted that this solution is by no means unique, and that it depends on the initial
constraint matrix A0 which may have been randomly generated.

Example 2. A mass and spring arrangement consisting of seven springs and five masses are coupled in series
according to Fig. 2. The springs have the stiffnesses ki ¼ 5i and the masses are set to mi ¼ i, so that the
stiffness and mass matrices become

K ¼

15 �10 0 0 0

�10 60 �15 �35 0

0 �15 35 �20 0

0 �35 �20 110 �25

0 0 0 �25 25

2
6666664

3
7777775
; M ¼

1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

2
6666664

3
7777775
.

The original, unconstrained structure has the natural frequencies:

x2 ¼ 1:8336 6:4916 13:5722 24:6768 42:5926

 �T

.

If the desired two lowest natural frequencies of the constrained structure are set to

x2� ¼ 15 20

 �T

it is obvious that in agreement with the Rayleigh separation theorem, cf. Ref. [26], we need to impose three
constraints and a solution satisfying these requirements is

A ¼

0:0408 0:0182 0:6769 0:7283 0:0970

0:5839 0:0156 0:0549 0:6842 0:4332

0:5517 0:1723 0:3333 0:6280 0:4006

2
64

3
75.
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Example 3. If the desired two lowest natural frequencies of the same structure as in Example 2 are set to

x2� ¼ 7 20

 �T

then it is obvious that it is sufficient to use two constraints in order to meet this requirement. Thus the highest
natural frequency is not specified and its numerical value will depend on the convergence direction, which in
turn depends on the initial choice of the constraint matrix. This can be illustrated by randomly choosing five
different initial constraint matrices:

A0
1 ¼

0:5238 0:4550 0:2779 0:3249 0:5796

0:1699 0:6752 0:4751 0:4546 0:2879

� 	
,

A0
2 ¼

0:3235 0:6550 0:3326 0:4424 0:3999

0:4591 0:2604 0:4166 0:5020 0:5440

� 	
,

A0
3 ¼

0:3411 0:4884 0:5623 0:3380 0:4634

0:1451 0:7669 0:5491 0:0894 0:2851

� 	
,

A0
4 ¼

0:0990 0:5819 0:7067 0:0416 0:3878

0:4113 0:4891 0:6979 0:2615 0:1900

� 	
,

A0
5 ¼

0:3734 0:3570 0:6016 0:4626 0:3965

0:0359 0:5100 0:5462 0:3143 0:5844

� 	
.

Applying the algorithm to the problem and using the different initial constraint matrices yields the following
solutions satisfying the requirements:

A5
1 ¼

0:4482 0:4204 0:2637 0:3272 0:6677

0:1761 0:6895 0:4635 0:4576 0:2633

� 	
,

A6
2 ¼

0:1570 0:6434 0:5023 0:4708 0:2958

0:4576 0:2323 0:2838 0:4699 0:6598

� 	
,

A4
3 ¼

0:3385 0:5018 0:5231 0:3341 0:4984

0:1283 0:7436 0:5986 0:0956 0:2512

� 	
,

A5
4 ¼

�0:0016 0:5165 0:6592 0:0829 0:5401

0:6163 0:1525 0:7581 �0:0905 0:1187

� 	
,

A4
5 ¼

0:3708 0:3271 0:6194 0:4506 0:4108

0:0384 0:5489 0:5213 0:3293 0:5631

� 	
.

The corresponding natural frequencies are

x2
1 ¼ 7 20 38:2630


 �T
,

x2
2 ¼ 7 20 34:9009


 �T
,

x2
3 ¼ 7 20 26:4797


 �T
,
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Fig. 3. The convergence for the different choices of initial constraint matrices in Example 3 (– –B– –, A1; – –J– –, A2; – –&– –, A3;

– –x – –, A4 and – –v – –, A5).
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x2
4 ¼ 7 20 33:3911


 �T
,

x2
5 ¼ 7 20 32:5213


 �T
.

The convergence of ~x2i � x2�
�� �� for the different choices of initial constraint matrices in this example can be

seen in Fig. 3, where obviously, the convergence rate is rather fast. It can also be seen that not only is the final
solution highly dependent on the different choices of initial constraint matrices, but the number of iterations
will also vary as a result of the different search directions which are initiated and is thus highly dependent on
the starting point of the iteration scheme.

From a theoretical point of view, the constraints in these examples will always be physically realizable in the
sense that they can always be reproduced, unlike methods which may generate negative cross-sectional areas
or such, which of course never can be reproduced. From a practical point of view the constraints may be
somewhat hard to reproduce since they do not necessarily have to be rigid interconnections or locking of dofs,
however they may serve as guidance in order to obtain the desired spectrum.
8. Summary

In this paper an inverse structural modification problem, similar to the one described in Ref. [21],
has been formulated. It uses the elements of a constraint matrix as design variables. The Jacobian
for the reduced spectrum mapping was derived and, with a few minor modifications, it was used
in an application of the solution scheme given in Ref. [25]. This solves the problem iteratively. The pro-
cedure is then applied numerically to a few simple problems in order to illustrate the methodology and
convergence performance, as well as demonstrating the significance of the initial choice of the constraint
matrix.
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